Next Frontier in CMOS Imaging

Always ON Sensing
Contents

- CMOS Imaging TODAY
- Power vs. Resolution
- PixArt Imaging Technology
- Call to Action
CMOS Imaging TODAY

• CMOS type imagers became the default imaging means in consumer electronics

• Dominated by “Capture and Display” (CAD)
 • Smartphones, Tablets, Laptops, or other devices with screen

• New Wave of Battery Operated IoT Devices
 • Place focus on power
PixArt Imaging Technology

• CMOS Imaging is the CORE

• Focus on image analytics type of applications
 • Low Power solutions through pixel and algorithmic detections
 • Incorporate “smart detection” into the sensor

• Product Successes
 • Optical Mouse
 • Wii Switch Gaming Controller
PixArt Imaging Technology Enables Low power visual Sensing Applications

- OFN, PPG Sensor, Optical Touch
 - Optical Mouse
 - Sensor Res: 2 x 2 ~ 40 x 40
 - Op. Power: < 1mW ~ 6mW
 - Optical Tracking
 - Sensor Res: 20 x 20 ~ 80 x 80
 - Op. Power: 1mW ~ 5mW
 - Hand Gesture Recognition
 - Sensor Res: 60 x 60 ~ 400 x 400
 - Op. Power: 8mW ~ 75mW
- Multiple Objects Tracking
 - Sensor Res: 100 x 100
 - Op. Power: < 20mW
- Optical Motion Tracking
 - Sensor Res: 80 x 80
 - Op. Power: 15mW
PixArt Imaging Technology

Achieving Low Power

• **Global Shutter**
 • Allow for very low fps duty cycle in Low Power Mode
 • Without “rolling shutter” artifact

• **Modularized Blocks (Digital and Analog)**
 • i.e During integration, Digital and Analog blocks can be OFF
 • i.e Skip function allow turning OFF rows not in use
 • Easier said than done!!!

• **Integrated Image Analytics**
 • Data are processed on silicon
 • Allow lowest “Deep Sleep” stage until an event is triggered
 • i.e Built-In Motion Detection
PixArt Imaging Technology

Effect of Heat on Image Sensors

- All image sensor suffers from Dark Current (caused by Heat)
 - Silicon impurities
 - Power dissipation on chip / Ambient Temp.
- Ultimately, power dissipation causes heat, in turn reduces the dynamic range

PixArt
71mW

Competition
100mW

2 Lux ; 70deg Ambient
Camera placed inside of oven

2 Lux ; 70deg Ambient
Camera placed inside of oven
PixArt Imaging Technology

Low power Sensing Available NOW

• Complete Camera Solution that includes:
 • Re-flowable optical lens
 • Low Power Image Sensor

• QVGA (320 x 240) at 30fps : 1.4mW

• QQVGA (160 x 120) at 30fps : 600µW

Sensor Parameters	Value
Array Size	320 x 240 (QVGA)
Pixel Size	3.0µm
Shutter type	Global shutter
Interface	Parallel 8-bit ; 4-wire SPI
Signal to Noise Ratio (SNR)	Max 40dB
Dynamic range	54 dB
Average Operating	1,400 uW @ 30fps QVGA
600 uW @ 30fps QQVGA	
PixArt Imaging Technology

Sample Images

Distance: 1.0m

Distance: 1.2m

Distance: 1.4m
Call to Action

- **Do MORE with LESS….Resolution**
 - Only sustainable way to achieve Always ON state
 - This is NOT a replacement for high resolution cameras

- **Use for Detection, Trigger, decision making, object counting and etc.**

- **Low Power Edge Processing is CRUCIAL**
 - Camera CANNOT address all variations of analytics on silicon
 - NOT scaleable and NOT realistic

- **Begin the discussion…..**
 - Partitioning / Optimization in terms of power
Thank You!

Charles Chong
Dir. Of Strategic Marketing, N. America
Email: Charles_chong@pixart.com
Website: www.pixart.com